Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(2): 46, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285090

RESUMO

OBJECTIVES: Multi-drug resistance (MDR) to chemotherapy is the main obstacle influencing the anti-tumor effect in breast cancer, which might lead to the metastasis and recurrence of cancer. Until now, there are still no effective methods that can overcome MDR. In this study, we aimed to investigate the role of sphingomyelin synthase 2 (SMS2) in breast cancer resistance. METHODS: Quantitative RT-PCR analysis was performed to assess changes in mRNA expression. Western blot analysis was performed to detect protein expression. Inhibitory concentration value of adriamycin (ADR) was evaluated using CCK 8 assay. The stemness ability of breast cancer cells was assessed by spheroid-formation assay. Immunofluorescence staining was conducted to show the cellular distribution of proteins. Breast tumor masses were harvested from the xenograft tumor mouse model. RESULTS: SMS2 overexpression increased the IC50 values of breast cancer cells. SMS2 decreased the CD24 transcription level but increased the transcription levels of stemness-related genes including CD44, ALDH, OCT 4 and SOX2 in breast cancer cells. SMS2 overexpression promoted the nuclear translocation of phosphorylated NF-κB, while suppression of SMS2 could inhibit the NF-κB pathway. CONCLUSIONS: SMS2 increased the stemness of breast cancer cells via NF-κB signaling pathway, leading to resistance to the chemotherapeutic drug ADR. Thus, SMS2 might play a critical role in the development of breast cancer resistance, which is a previously unrecognized mechanism in breast cancer MDR development.


Assuntos
Neoplasias da Mama , NF-kappa B , Transferases (Outros Grupos de Fosfato Substituídos) , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Modelos Animais de Doenças , Doxorrubicina , Transdução de Sinais , Células-Tronco Neoplásicas
2.
Cancers (Basel) ; 15(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835594

RESUMO

Mannose-binding lectin 2 (MBL2), a member of the multimeric lectin family, is crucial in immune regulation and tumor development. MBL2 gene polymorphisms are associated with the risk and prognosis of various tumors, including hepatocellular carcinoma (HCC). Its functional role in HCC remains largely unclear. In this study, we aimed to identify whether MBL2 is a key regulator and a potential therapeutic target for HCC. A bioinformatics analysis revealed close relationships among MBL2 downregulation, the tumor-associated proliferation and metastasis pathway, and tumor immunosuppressive microenvironments. Lower expression of MBL2 in HCC patients was linked to an unfavorable prognosis. A cell counting kit-8 assay, colony formation assay, transwell migration assay, and wound healing assay further confirmed that the overexpression of MBL2 could directly inhibit the proliferation and metastasis of HCC. Moreover, MBL2 expression was regulated by miR-34c-3p, as confirmed by the dual-luciferase reporter assay, thereby demonstrating tumor progression in HCC cells. Thus, our study offers the first comprehensive confirmation of the role of MBL2 in the development of HCC through multi-omics analysis and experimental validation. Furthermore, miR-34c-3p was found to be an upstream mechanism of the downregulation of MBL2 expression and could be a promising therapeutic target, expanding treatment options for patients with HCC.

3.
Nat Biotechnol ; 41(12): 1758-1764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36894598

RESUMO

The ability to control gene expression and generate quantitative phenotypic changes is essential for breeding new and desired traits into crops. Here we report an efficient, facile method for downregulating gene expression to predictable, desired levels by engineering upstream open reading frames (uORFs). We used base editing or prime editing to generate de novo uORFs or to extend existing uORFs by mutating their stop codons. By combining these approaches, we generated a suite of uORFs that incrementally downregulate the translation of primary open reading frames (pORFs) to 2.5-84.9% of the wild-type level. By editing the 5' untranslated region of OsDLT, which encodes a member of the GRAS family and is involved in the brassinosteroid transduction pathway, we obtained, as predicted, a series of rice plants with varied plant heights and tiller numbers. These methods offer an efficient way to obtain genome-edited plants with graded expression of traits.


Assuntos
Melhoramento Vegetal , Biossíntese de Proteínas , Regulação para Baixo/genética , Fenótipo , Plantas/genética , Fases de Leitura Aberta/genética
4.
EMBO J ; 41(15): e110218, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775648

RESUMO

Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/ß-catenin axis as a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Proteínas de Transporte/metabolismo , Proteínas com Domínio LIM/metabolismo , Neoplasias Hepáticas , gama-Butirobetaína Dioxigenase/metabolismo , Carcinoma Hepatocelular/metabolismo , Carnitina , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Nature ; 602(7897): 455-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140403

RESUMO

Disruption of susceptibility (S) genes in crops is an attractive breeding strategy for conferring disease resistance1,2. However, S genes are implicated in many essential biological functions and deletion of these genes typically results in undesired pleiotropic effects1. Loss-of-function mutations in one such S gene, Mildew resistance locus O (MLO), confers durable and broad-spectrum resistance to powdery mildew in various plant species2,3. However, mlo-associated resistance is also accompanied by growth penalties and yield losses3,4, thereby limiting its widespread use in agriculture. Here we describe Tamlo-R32, a mutant with a 304-kilobase pair targeted deletion in the MLO-B1 locus of wheat that retains crop growth and yields while conferring robust powdery mildew resistance. We show that this deletion results in an altered local chromatin landscape, leading to the ectopic activation of Tonoplast monosaccharide transporter 3 (TaTMT3B), and that this activation alleviates growth and yield penalties associated with MLO disruption. Notably, the function of TMT3 is conserved in other plant species such as Arabidopsis thaliana. Moreover, precision genome editing facilitates the rapid introduction of this mlo resistance allele (Tamlo-R32) into elite wheat varieties. This work demonstrates the ability to stack genetic changes to rescue growth defects caused by recessive alleles, which is critical for developing high-yielding crop varieties with robust and durable disease resistance.


Assuntos
Ascomicetos , Resistência à Doença , Edição de Genes , Genoma de Planta , Triticum , Arabidopsis/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Resistência à Doença/genética , Mutação , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
7.
Sci China Life Sci ; 65(4): 731-738, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34406572

RESUMO

Genome editing is an unprecedented technological breakthrough but low plant regeneration frequencies and genotype dependence hinder its implementation for crop improvement. Here, we found that transient expression of a complex of the growth regulators TaGRF4 and TaGIF1 (TaGRF4-TaGIF1) increased regeneration and genome editing frequency in wheat. When we introduced synonymous mutation in the miR396 target site of TaGRF4, the resulting complex (mTaGRF4-TaGIF1) performed better than original TaGRF4-TaGIF1. Use of mTaGRF4-TaGIF1 together with a cytosine base editor targeting TaALS resulted in 2-9-fold increases in regeneration and transgene-free genome editing in 11 elite common wheat cultivars. Therefore, mTaGRF4-TaGIF1 will undoubtedly be of great value in crop improvement and especially in commercial applications, since it greatly increased the range of cultivars available for transformation.


Assuntos
Edição de Genes , MicroRNAs , Sistemas CRISPR-Cas , Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/genética , Triticum/genética , Triticum/metabolismo
8.
Neoplasia ; 23(12): 1227-1239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768109

RESUMO

Sorafenib is a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), and reducing sorafenib resistance is an important issue to be resolved for the clinical treatment of HCC. In the current study, we identified that ABCC5 is a critical regulator and a promising therapeutic target of acquired sorafenib resistance in human hepatocellular carcinoma cells. The expression of ABCC5 was dramatically induced in sorafenib-resistant HCC cells and was remarkably associated with poor clinical prognoses. The down-regulation of ABCC5 expression could significantly reduce the resistance of sorafenib to HCC cells. Importantly, activation of PI3K/AKT/NRF2 axis was essential for sorafenib to induce ABCC5 expression. ABCC5 increased intracellular glutathione (GSH) and attenuated lipid peroxidation accumulation by stabilizing SLC7A11 protein, which inhibited ferroptosis. Additionally, the inhibition of ABCC5 enhanced the anti-cancer activity of sorafenib in vitro and in vivo. These findings demonstrate a novel molecular mechanism of acquired sorafenib resistance and also suggest that ABCC5 is a new regulator of ferroptosis in HCC cells.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Hepáticas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ferroptose/fisiologia , Humanos , Neoplasias Hepáticas/patologia , Sorafenibe/farmacologia
9.
Front Oncol ; 11: 686365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178679

RESUMO

PURPOSE: Liquid biopsy is attracting attention as a method of real-time monitoring of patients with tumors. It can be used to understand the temporal and spatial heterogeneity of tumors and has good clinical application prospects. We explored a new type of circulating tumor cell (CTC) enrichment technology combined with next-generation sequencing (NGS) to analyze the correlation between genomic alterations in circulating tumor cells of hepatocellular carcinoma and the counts of mesenchymal CTCs and CTC-associated white blood cell (CTC-WBC) clusters. METHODS: We collected peripheral blood samples from 29 patients with hepatocellular carcinoma from January 2016 to December 2019. We then used the CanPatrol™ system to capture and analyze mesenchymal CTCs and CTC-WBC clusters for all the patients. A customized Illumina panel was used for DNA sequencing and the Mann-Whitney U test was used to test the correlation between mesenchymal CTCs, CTC-WBC cluster counts, and specific genomic changes. RESULTS: At least one somatic hotspot mutation was detected in each of the 29 sequenced patients. A total of 42 somatic hot spot mutations were detected in tumor tissue DNA, and 39 mutations were detected in CTC-DNA, all of which included common changes in PTEN, MET, EGFR, RET, and FGFR3. The number of mesenchymal CTCs was positively correlated with the somatic genomic alterations in the PTEN and MET genes (PTEN, P = 0.021; MET, P = 0.008, Mann-Whitney U test) and negatively correlated with the somatic genomic alterations in the EGFR gene (P = 0.006, Mann-Whitney U test). The number of CTC-WBC clusters was positively correlated with the somatic genomic alterations in RET genes (P = 0.01, Mann-Whitney U test) and negatively correlated with the somatic genomic alterations in FGFR3 (P = 0.039, Mann-Whitney U test). CONCLUSIONS: We report a novel method of a CTC enrichment platform combined with NGS technology to analyze genetic variation, which further demonstrates the potential clinical application of this method for spatiotemporal heterogeneity monitoring of hepatocellular carcinoma. We found that the number of peripheral blood mesenchymal CTCs and CTC-WBC clusters in patients with hepatocellular carcinoma was related to a specific genome profile.

10.
Nat Biotechnol ; 39(10): 1292-1299, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33859403

RESUMO

Although prime editors (PEs) have the potential to facilitate precise genome editing in therapeutic, agricultural and research applications, their specificity has not been comprehensively evaluated. To provide a systematic assessment in plants, we first examined the mismatch tolerance of PEs in plant cells and found that the editing frequency was influenced by the number and location of mismatches in the primer binding site and spacer of the prime editing guide RNA (pegRNA). Assessing the activity of 12 pegRNAs at 179 predicted off-target sites, we detected only low frequencies of off-target edits (0.00~0.23%). Whole-genome sequencing of 29 PE-treated rice plants confirmed that PEs do not induce genome-wide pegRNA-independent off-target single-nucleotide variants or small insertions/deletions. We also show that ectopic expression of the Moloney murine leukemia virus reverse transcriptase as part of the PE does not change retrotransposon copy number or telomere structure or cause insertion of pegRNA or messenger RNA sequences into the genome.


Assuntos
Edição de Genes/métodos , Genoma de Planta/genética , Sistemas CRISPR-Cas , Vírus da Leucemia Murina de Moloney/genética , Mutação , Oryza/genética , RNA Guia de Cinetoplastídeos/genética , DNA Polimerase Dirigida por RNA/genética , Transcrição Reversa/genética , Sequenciamento Completo do Genoma
11.
Sci China Life Sci ; 64(10): 1624-1633, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33165814

RESUMO

Herbicide-tolerant rice varieties generated by genome editing are highly desirable for weed control. We have used a cytosine base editor to create a series of missense mutations in the P171 and/or G628 codons of the acetolactate synthase (ALS) gene to confer herbicide tolerance in rice. The four different missense mutations in the P171 codon, P171S, P171A, P171Y and P171F, exhibited different patterns of tolerance towards five representative herbicides from five chemical families of ALS inhibitors. For example, P171S and P171A had lower levels of tolerance than P171Y and P171F to bispyribac but not to the other herbicides. Interestingly, a novel triple mutant (P171F/G628E/G629S) had the highest tolerance to all five tested herbicides. Field trials showed that both P171F and P171F/G628E/G629S could potentially be used with nicosulfuron. Our work illustrates an effective way of using base editing to generate herbicide tolerance in elite rice varieties.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Tolerância a Medicamentos/genética , Edição de Genes , Herbicidas/farmacologia , Oryza/genética , Acetolactato Sintase/genética , Citosina , Inibidores Enzimáticos/farmacologia , Mutação , Oryza/efeitos dos fármacos , Oryza/enzimologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
12.
Front Oncol ; 10: 1758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224869

RESUMO

Aim: Circulating tumor cells (CTC) are a precursor to metastasis in several types of cancer and are occasionally found in the bloodstream in association with immune cells, such as white blood cells (WBCs). CTC-associated WBC (CTC-WBC) clusters can promote CTC appreciation and metastasis, suggesting that patients with CTC-WBC clusters found in the peripheral blood may have a worse prognosis. However, it is unclear whether CTC-WBC clusters are present in the peripheral blood of patients with hepatocellular carcinoma (HCC) and suggest a poor prognosis for HCC. Methods: We collected peripheral blood from 214 patients with HCC from January 2014 to December 2016. CanPatrol™ CTC analysis technology was used to isolate and count CTCs and CTC-WBC clusters in the patients' peripheral blood. Chi-squared analysis was used to calculate the correlation between the CTC-WBC clusters and clinicopathological characteristics. Kaplan-Meier survival analysis and Cox regression analysis were used to assess patient prognosis. Results: We used CanPatrol™ CTC analysis technology to count different types of CTCs and CTC-WBC clusters. The results showed that CTC-WBC clusters and tumor size (P = 0.001), tumor number (P = 0.005), portal vein tumor thrombus (P = 0.026), BCLC stage (P < 0.001), AFP level (P = 0.002), and total number of CTCs (P < 0.001) were statistically related. Cox regression analysis revealed that CTC-WBC clusters are an independent prognostic indicator of DFS (HR = 1.951, 95%CI:1.348-2.824, P < 0.001) and OS (HR = 3.026, 95%CI:1.906-4.802, P < 0.001) in HCC patients. Using Kaplan-Meier analysis, we found that positive CTC-WBC cluster patients had significantly shorter DFS and OS than patients with negative CTC-WBC (P < 0.001 and P < 0.001, respectively). Conclusions: CTC-WBC clusters in the peripheral blood are an independent predictor of DFS and OS, and their presence indicates poor prognosis in patients with HCC.

13.
BMC Plant Biol ; 20(1): 425, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933485

RESUMO

BACKGROUND: To date, CRISPR/Cas9 RNP editing tools have not been applied to the genetic modification of banana. Here, the establishment of a PEG-mediated banana protoplast transformation system makes it possible to build an efficient DNA-free method for a site-directed mutagenesis system. RESULTS: Protoplasts constitute a versatile platform for transient expression in plant science. In this study, we established a PEG-mediated banana protoplast transformation system. This system was further optimized for successfully delivering CRISPR/Cas9 and CRISPR/Cas12a plasmids and CRISPR/Cas9 ribonucleoproteins (RNPs) for targeted delivery of the PDS gene into banana protoplasts. Specific bands were observed in PCR-Restriction Enzyme Digestion (PCR-RE) assays, and Sanger sequencing of single clones further confirmed the occurrence of indels at target sites. Deep amplicon sequencing results showed that the editing efficiency of the CRISPR/Cas9 system was higher than that of the other two systems. CONCLUSIONS: The PEG-mediated banana protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in banana. The application of the CRISPR/Cas9 RNP system enables the generation of banana plants engineered by DNA-free gene editing.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Musa/genética , Musa/metabolismo , Polietilenoglicóis/metabolismo , Protoplastos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Mutagênese Sítio-Dirigida/métodos , Melhoramento Vegetal/métodos
14.
Genome Biol ; 21(1): 230, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883370

RESUMO

Fine-tuning quantitative traits for continuous subtle phenotypes is highly advantageous. We engineer the highly conserved upstream open reading frame (uORF) of FvebZIPs1.1 in strawberry (Fragaria vesca), using base editor A3A-PBE. Seven novel alleles are generated. Sugar content of the homozygous T1 mutant lines is 33.9-83.6% higher than that of the wild-type. We also recover a series of transgene-free mutants with 35 novel genotypes containing a continuum of sugar content. All the novel genotypes could be immediately fixed in subsequent generations by asexual reproduction. Genome editing coupled with asexual reproduction offers tremendous opportunities for quantitative trait improvement.


Assuntos
Metabolismo dos Carboidratos , Fragaria/metabolismo , Edição de Genes , Alelos , Fragaria/genética , Frutas/metabolismo , Fases de Leitura Aberta , Característica Quantitativa Herdável , Reprodução Assexuada
15.
Nat Biotechnol ; 38(12): 1460-1465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32601432

RESUMO

Short insertions and deletions can be produced in plant genomes using CRISPR-Cas editors, but reliable production of larger deletions in specific target sites has proven difficult to achieve. We report the development of a series of APOBEC-Cas9 fusion-induced deletion systems (AFIDs) that combine Cas9 with human APOBEC3A (A3A), uracil DNA-glucosidase and apurinic or apyrimidinic site lyase. In rice and wheat, AFID-3 generated deletions from 5'-deaminated C bases to the Cas9-cleavage site. Approximately one-third of deletions produced using AFID-3 in rice and wheat protoplasts (30.2%) and regenerated plants (34.8%) were predictable. We show that eAFID-3, in which the A3A in AFID-3 is replaced with truncated APOBEC3B (A3Bctd), produced more uniform deletions from the preferred TC motif to the double-strand break. AFIDs could be applied to study regulatory regions and protein domains to improve crop plants.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Citidina Desaminase/metabolismo , Oryza/genética , Proteínas/metabolismo , Deleção de Sequência , Triticum/genética , Desaminação , Edição de Genes , Humanos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Protoplastos/metabolismo , Regeneração
16.
Sci China Life Sci ; 63(11): 1619-1630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32592086

RESUMO

The length of the sgRNA-DNA complementary sequence is a key factor influencing the cleavage activity of Streptococcus pyogenes Cas9 (SpCas9) and its variants. The detailed mechanism remains unknown. Here, based on in vitro cleavage assays and base editing analysis, we demonstrate that reducing the length of this complementary region can confer nickase activity on SpCas9 and eSpCas9(1.1). We also show that these nicks are made on the target DNA strand. These properties encouraged us to develop a dual-functional system that simultaneously carries out double-strand DNA cleavage and C-to-T base conversions at separate targets. This system provides a novel tool for achieving trait stacking in plants.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , DNA/metabolismo , Desoxirribonuclease I/metabolismo , RNA Guia de Cinetoplastídeos/química , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , DNA/química , Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I/genética , Edição de Genes , Mutação , Streptococcus pyogenes/enzimologia
17.
Nat Protoc ; 15(2): 338-363, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31915386

RESUMO

Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR-Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)-Cas9 vectors, identifying transgene-free uorf mutants, and finally comparing the mRNA, protein and phenotypic levels of target genes in uorf mutants and controls. Predicting uORFs and confirming their effects in protoplasts takes only 2-3 weeks, and transgene-free mutants with edited target uORFs controlling different levels of pORF translation can be obtained within 4 months. Unlike previous methods, our strategy achieves fine-tuning of gene translation in transgene-free derivatives, which accelerates the analysis of gene function and the improvement of crop traits.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Fases de Leitura Aberta/genética , Plantas/genética , Biossíntese de Proteínas/genética , Transcrição Gênica
18.
Nat Plants ; 5(5): 480-485, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988404

RESUMO

Developing herbicide-tolerant varieties by genome editing holds great promise for addressing the worsening weed problems in wheat cultivation1. Here, we generated transgene-free wheat germplasms harbouring herbicide tolerance mutations that confer tolerance to sulfonylurea-, imidazolinone- and aryloxyphenoxy propionate-type herbicides by base editing the acetolactate synthase (ALS) and acetyl-coenzyme A carboxylase genes. These stackable herbicide tolerance traits provide a potentially powerful tool for weed management. In addition, we found that base editing at the wheat ALS Pro-174 codon (TaALS-P174) endowed wheat with sufficient resistance to nicosulfuron herbicide in MS growth medium to allow selection. When the TaALS-P174 editor was coupled with editors for other targets of interest, co-editing occurred in the nicosulfuron-resistant plants, and selection for resistance in growth medium enriched the frequency of coupled targets by several-fold. This selectable co-editing system has the potential to greatly bolster adoption of base editing for crop improvement applications.


Assuntos
Edição de Genes/métodos , Resistência a Herbicidas/genética , Triticum/genética , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Alelos , Códon/genética , Marcadores Genéticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Alinhamento de Sequência , Triticum/efeitos dos fármacos , Triticum/enzimologia , Controle de Plantas Daninhas/métodos
19.
Annu Rev Plant Biol ; 70: 667-697, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30835493

RESUMO

Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Cruzamento , Sistemas CRISPR-Cas , Genoma de Planta , Melhoramento Vegetal
20.
Methods Mol Biol ; 1917: 327-335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610647

RESUMO

The great advances in exploiting the CRISPR/Cas9 system are paving the way for targeted genome engineering in plants. Genome editing by direct delivery of CRISPR/Cas9 ribonucleoprotein complexes (RNPs) into plant cells reduces off-target mutations and avoids the integration of foreign DNA fragments, thus providing an efficient and accurate method for precision crop breeding. Here we describe an RNP-based genome editing protocol for wheat. The protocol covers the in vitro transcription of sgRNA, purification of Cas9 protein, biolistic delivery of CRISPR/Cas9 RNPs, and tissue culture procedures for regenerating testable seedlings.


Assuntos
Biolística/métodos , Sistemas CRISPR-Cas/fisiologia , Triticum/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA